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THREE-DIMENSIONAL DIFFUSIVE BOUNDARY-LAYER PROBLEMS 

A. D. Polyanin UDC 532.72 

i. PROBLEM FORMULATION. CHOICE OF COORDINATE SYSTEM 

Consider three-dimensional viscous incompressible laminar flow past a solid or liquid 
particle of arbitrary shape with convective diffusion to the surface. It is assumed that the 
Peclet number Pe = aUD "I is large; here a is the .characteristic dimension of the particle 
(it is usually the radius of an equivalent sphere by volume), U is the characteristic flow 
velocity (at infinity), D is the diffusion coefficient. It is also assumed that concentra- 
tion C, is constant at the surface and away from it, equal to C s and C~, respectively, and 
the flow field is determined from the solution of the corresponding hydrodynamic problem of 
the flow past the particle. 

Orthogonal curvilinear coordinate system in 6, ~, % connected to the body surface and 
streamlines is used in the analysis as in [i, 2]. The directions of unit Vectors at any point 
M in the surrounding fluid are given by e~, eq, e I (Fig. i). The unit vector e6 is deter- 
mined by the direction of the normal to surface of the particle passing through the point M; 
the unit vector e n is given by the direction of the projection of the velocity vector at the 
point M on the plane perpendicular to e~; the unit vector e I is chosen such that the system 
of unit vectors e<, e n, e I is a right-handed orthogonal triad (Fig. i). The origin of the coor- 
dinate system and the procedure for computing curvilinear coordinates (i.e., the dependence 
of metric tensOr components g~, g~n' gZZ on ~, ~, %), are chosen from the point of view of 
convenience in each particular case; for concreteness, we further assume that the surface of 
the particle is given by a fixed value [ = 0. In such a coordinate system the fluid velocity 
vector at each point is given by v = {v~vq, 0}. 

The equation of continuity for an incompressible fluid has the form 

d i v v = - ~  ~-~ + - ~  vn =0.  (1.1) 

The function 9(6, q, l) is determined as the solution to the system 

0~ __ 1 /  g 0~ _ _ V ~ l / ' g  " (1.2) 

Then the equation of continuity (i.i), which coincides with the condition for integrability 
of the system (1.2), is automatically satisfied. The constant of the integration in Eq. 
(1.2) is chosen such that the function ~ becomes zero at the surface. 

The surface ~(~, q, ~) = const wholly consists of streamlines. The function ~ has a 
simple physical meaning: It is the three-dimensional analog Of stream function. In the plane 
and axisymmetric cases ~ coincides with stream function. 

In nondimensional variables the equation of stationary convective diffusion and boundary 
conditions in curvilinear coordinate system ~, q, I are written in the following form using 
Eq. (1.2): 

n) + o n  \ + ; -- -- ~ [ (1.3) 

= O~ c = O; ~--~ oo~ c-+ 1~ (1.4) 

c = ( C ,  - -  C ~ ) / ( C ~ - -  C~), Pe = a U / O ,  g = g ~ g ~ g ~ ,  
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= to.s* / e  x ~'e2J 

Fig. 1 

where the Jacobian of functions c and ~ is given on the left-hand side of the equation. 

Consider first the case when there are only two isolated singularities on the surface 
of the particle (cases when there are no stagnation points on the surface and there is a 
bound vortex behind the particle are not considered in this work). Further, the stagna- 
tion point on the surface of the particle will be called the inflow (outflow) point, if in 
its neighborhood the normal velocity component of the fluid is towards (away from) the sur- 
face of the body; diffusive boundary layer located near the surface of the particle is "gen- 
erated" in the neighborhood of the inflow points. Let the inflow point be denoted by the 
coordinate ~- and the outflow point by ~+ (see Fig. i). 

The no-slip condition must be satisfied at the solid (liquid) surface in viscous flow 
and hence in the case of incompressible flow the three-dimensional analog for stream func- 
tion can be represented in the following form using Eq. (1.2) 

~ - + 0 ,  ~ - +  ~ ( q ~  D.  ( l . 5 )  

I n  c e r t a i n  p r o b l e m s  w i t h  l a m i n a r  v i s c o u s  f l o w  p a s t  s m o o t h  s o l i d  p a r t i c l e s ,  t h e  p a r a m -  
e t e r  n u s u a l l y  t a k e s  t h e  v a l u e  two .  N e v e r t h e l e s s ,  t h e r e  a r e  some e x a m p l e s  o f  S t o k e s  f l o w  i n  
w h i c h  n = 3 [ 3 ] .  I n  t h e  c a s e  o f  a d r o p l e t  o r  a b u b b l e  a n d  a l s o  i n  t h e  c a s e  o f  i n c o m p r e s s i b l e  
flow past the particle, n = i. 

2. METHOD OF SOLUTION. FUNDAMENTAL EQUATIONS 

FOR NONDIMENSIONAL INTEGRAL FLOW 

Assuming that the region near the particle is characterized by the inequalities ~ ~ 0, 
I> 0, we switch from older to newer (stretched) coordinates in the diffusive boundary layer: 

(L ~, ~ ) - ~ ( r , ~  ~, ~), r = Pe ~ ,  v = ( n +  1) -1 . 

Eliminating higher order terms of the series with the small parameter Pe -~ from Eq. (1.3) us- 
ing Eq. (1.5) (here, it so happens that the last two terms within the curved brackets can be 
neglected compared to the first), we obtain the diffusion boundary-layer equations in the 
following form: 

- -  a (Y, ,l) g~ a y  ~ (2.1) 

which parametrically depends on the third curvilinear coordinate 4, analogous to the cyclical 
variables in analytical mechanics; here and in what follows, index zero denotes quantities 
at the body surface with ~ = 0. 

Using the new variables 

$ : p e ' g ] ~  : p e ' ~ - ~ ,  t = t ( n ,  n - ;  ~)  = in ~ dn' (2.2) 
9- 

the b o u n d a r y - l a y e r  p r o b l e m  on d i f f u s i o n  ( 2 . 1 )  and  ( 1 . 4 )  i s  r e d u c e d  t o  t h e  f o l l o w i n g  b o u n d a r y -  
v a l u e  p r o b l e m :  

ac ~l-n O~e (2.3) - f ~  = 0, c (~, 0) = I~ c (0, t) = 0,~ ~ (oo, t) = 1. 
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Its solution has the form 

c=TT~37,v,~ 7- ), v = , , + i ,  7(v,x)=.~ rb , )= (2 .4 )  
0 

=7(~, +oo). 
Nondimensional local diffusion flow is determined by the normal derivative of the con- 

centration (2.4) at the surface of the body 

1 

= ~___!_ , 'ec)  ~v(~_~)~Pe~lf(rl,;gl'~t_~(n,n_;~). (2.5) 
J(n, Vg (v  (,')l/go,, 

For t he  comple t e  n o n d i m e n s i o n a l  d i f f u s i v e  f low d i s s o l v e d  in  a l i q u i d  s u b s t a n c e  a t  t he  
surface of the particle S = {~ = 0, q- ~ n ~ q+, 0 ~ I 4 A} we have 

A ~  + A 

' =  S " "  �9 i '  ('/5 J (2.6) 
8 0 ~-- 0 

1 
n-Fl" 

It is worth noting that a more complex analysis of three-dimensional boundary layer was 
carried out in [4, 5], where a transformation leading to the separation of variables was 
found for the stationary convective diffusion equations written in the usual boundary-layer 
coordinates which are frequently used in similar hydrodynamic boundary layer problems and con L 
nected only to the surface of the body (and not to the streamlines). A local orthogonal eurvi- 
linear coordinate system similar to E, ~, I was used in the boundary layer in [6] for the 
case of an arbitrary three-dimensional flow past a solid particle which corresponds to a value 
n = 2 in Eq. (1.5). Equations for the concentration distribution in diffusive boundary layer 
for the two-dimensional (plane or axisymmetric) flow past droplets and particles of arbitrary 
shape, described in one or the other notations in different coordinate systems, have appeared 
in many works (see e.g., [3,7-10]). 

The case ~ ~ 0 and the case where the flow region around the particle is given by the 
inequality E ~ 0 are considered in a similar manner. In the general case, when there are more 
than two stagnation points and lines on the surface of the particle (i.e., the analog of 
stream function changes sign), the flow region near the surface of the body is divided into 
segments in each of which the sign of the stream function analog is constant. It is possible 
to show that the concentration distribution and local diffusive flow at each of these seg- 
ments are determined by Eqs. (2.4) and (2.5), where 

n ,~ g~ [ / l ~ d q  (2 .7 )  

and nk (k = i ,  . . . ,  K) i s  t he  s t a g n a t i o n  l i n e  ( p o i n t )  o f  the  i n f l o w  l o c a t e d  a t  t he  boundary  
( i n s i d e )  o f  t h e  segment .  Complete  i n t e g r a l  f low i s  computed by summing up i n t e g r a l  f lows  in  
a l l  s egmen t s .  

I n  t he  t w o - d i m e n s i o n a l  c a s e  ( a / a x  = 0 ) ,  Eqs. ( 2 . 4 ) - ( 2 . 7 )  r e d u c e  to  r e s u l t s  of  [3]. 
In  o r d e r  to  use  Eqs.  ( 2 . 4 ) - ( 2 . 7 )  i n  the  g e n e r a l  ca se  of  t h r e e - d i m e n s i o n a l  f l ow ,  i t  i s  

necessary to solve auxiliary problems on the determination of curvilinear coordinate system 
~, n, X and find an expansion for the analog stream function near the surface of the drop- 
lets and particles (1.5). As a rule, the initial information on the flow field makes it 
possible to obtain directly only the distribution of liquid velocities near the particle in 
certain orthogonal fixed system of coordinates ~, ~, X fixed only to its surface ~ = 0 (and 
not connected to streamlines). In view of this it is often necessary to compute the quan- 
tities f and t present in Eqs. (2.4)-(2.6) directly in the initial orthogonal coordinate sys- 
tem ~, ~, X. Consequently, we will now show how, using the asymptote of tangential vector 
component of the liquid flow velocity v T near the particle surface 

~ 0 ,  v , - + ~ = - x ( f ~ e ~ +  F ze z),~ F~ = Fu(~,,%), F z =  Fx(~,%), (2.8) 

to obtain functions (1.5) and (2.7) in the coordinate system ~, ~, X. 
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Comparing Eqs. (1.2), (1.5), and (2.8) we get the following equations for functions f 
and t: 

~+I ~ l--n l+n I 1 

[ : ~ F , t = n g ~ "  g ~  f g~nd~l , (2 .9 )  
Y g~ 

F = (F~ + F I )  ~/~. 

Here and in  what f o l l o w s  the  i ndex  z e r o  on a l l  t he  a b o v e - m e n t i o n e d  components  of  the  m e t r i c  
t e n s o r  i s  o m i t t e d  ( i t  s h o u l d  be remembered t h a t  a l l  t h e s e  q u a n t i t i e s  a r e  t aken  a t  the  p a r t i c l e  
s u r f a c e  w i t h  ~ ' =  0 ) .  

C o n s i d e r i n g  t h a t  the  o r t h o g o n a l  c u r v i l i n e a r  c o o r d i n a t e s  n = n (~ ,  • and X = X(~, X) 
s h o u l d  s a t i s f y  t he  c o n d i t i o n s  vm = e o n s t  V~ and (vx'VX) = O, the  f o l l o w i n g  e q u a t i o n s  a r e  ob-  
t a i n e d  f o r  the  d e t e r m i n a t i o n  o f  ~, X: 

O; (2.10) 

F~t 0)~ F~ 0% ~_- O. 

Vg--~ Ola + ]/-g~z OZ (2. ii) 

Since the square of the surface length is invariant in the transformation from the old 
~, X to the new ~, X coordinate system: 

g ~ d ~  ~ -~ g~zd% ~ = g~,~d~] ~ + gzzd~ ~ 

On d~ o~ o~ O~ (2 .12 )  

Bya fewsimplificationsofEq. (2.12) using Eqs. (2.10) and (2.11), it is possible to ob- 
tain an expression for the metric coefficient gXX: 

Similar equations for the other metric coefficient, g~ are obtained from Eq. (2.13) by re- 
placing X by ~, ~ by X, and X by ~. 

In the integrand of the expression for t (2.9) the integration variable h is changed to 
the variable ~, using the following relation which is valid when X = const: 

f = ~  d~ (2.14) 

which is obtained from (2.12) in view of the fact that the equality X = const is fulfilled on 
the integral curves of the characteristic differential equations 

~g-~ r dx, (2.15) f~ d ~ - -  Y-~ 

corresponding to the partial differential equation (2.11). As a result we obtain 

I = t ( l~ ,  I x - l ~ ) = n  ~ ~, d = .  

IX-- 
(2.16) 

2,~ ~ ~ f o ~  ~ t d 
= ,, I k 

Here and in what follows, the subscript X after the bracket (}) denotes that the respective 
quantity is obtained at X = const. The transformation within the integrand (2.9) from h to 
another variable is carried out by exchanging the local coordinates ~ ++ X in (2.16). 

In order to study the mass transfer to a spherical particle or droplet (bubble) in an 
arbitrary three-dimensional laminar flow, it is useful to have equations to determine the 
function t in spherical coordinate system r, e, ~p,. fixed to the center of the particle. In 
this case we have (metric coefficients are obtained at the particle surface) 
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= r - - t ~  [~ = O, % ---- ~; g[[ = t~ g ~  = t~ gxx----s in~ O- ( 2 . 1 7 )  

Using Eq. (2.16) and Eq. (2.17) for the variable t, the following equations are ob- 
tained : 

: =  o}jo i '  
0- \00 J ]~ [ (2.18) 

{! i :-- O~ -o IFo,~ { O~, "~-o~ _, {sinO,F~ln (--~-), }~dqo i f=  nq-l. 
= ,,, o 

Thus, the procedure for the computation of integral flow (or the mean Sherwood number) at 
the particle surface is carried out sequentially in four stages: The tangential component of 
the velocity near the particle surface (2.8) is first determined; then the general solution 
of the characteristic equation (2.15) is found and by replacing the constant of integration 
in it by X, the relation ~ = X(~, X) is obtained; in the third stage the variable t is computed 
from any of Eqs. (2.16) and (2.18) (which are chosen from the point of view of convenience) 
taking into consideration that the integrand should be initially expressed only through the 
coordinate ~ and the variable with respect to which the integration is carried out; in the 
final step the integrals similar to (2.6) are computed. 

The use of Eqs. (2.16) and (2.18) is described with the help of a few examples. 

3. MASS TRANSFER TO SPHERICAL DROPLET OR SOLID PARTICLE IN 

AN ARBITRARY IN PURE SHEAR FLOW 

Consider mass transfer to a spherical droplet or a solid particle in an arbitrary, pure, 
linear shear flow whose velocity distribution at infinity has the form 

r - ~  oo,, vi : Eijx~ ~ o ( t ) ,  Ei~6ij = O, E ~  = E j i ,  ( 3 . 1 )  

where v i and Eij are nondimensional components of velocity and the shear stress tensor (ap- 
propriate values are chosen in each concrete case while normalizing these) described in Car- 
tesian coordinates whose origin is fixed to the center of the particle; here and in what 
follows, repetition of indices i and j indicates summation (i, j = i, 2, 3); 6ij is the Kron- 
ecker delta. The sum of the diagonal elements equals zero if the flow is incompressible 
(v-V) = 0; symmetry of shear stress tensor when the indices i and j are interchanged indi- 
cates the absence of rotation at infinity (in other words, purely deformed flow is being con- 
sidered). 

The solution to the hydrodynamic problem of an arbitrary purely deformed Stokes' flow 
past a spherical droplet (3.1) has the form [Ii] 

V i = E i j x  j t ~+i r 5 - - ~ E J k X i X ~ X h \  ~+i 7 "~+t ~ ' (3.2) 

= + + 

where B is the ratio of the viscosities of the droplet and the surrounding medium; the value 
B = ~ corresponds to a solid particle and B = 0 denotes gas bubble. 

The symmetric tensor E can be reduced to the diagonal form by the transformation of the 
coordinate system with components E m (m = i, 2, 3), which are determined by solving the cubic 

det I 0. Diagonal elements El, E=, E3 reduced to the principal axes 
IEij - Em6ij[ - e strength of the stretched (compressed) flow along the coordi- 

equation 
of the tensor E determine h 
nate axis. The symmetric shear tensor has three invariant scalars: 

:: = Eij6ij = El + E2 + E3 = O, J2 = (EijEo) '/~ = ( ~'~ -~- E2 2 "At- E~) I/2 , 

J3 = i detilN~Jili ~/3 = l E:E~E3 I:/3~ (3.3) 

which remain unchanged with any transformation (with reflections) of the original coordinate 
system. In accordance with incompressibility condition J: = 0 only two of the three diagonal 
elements will be independent. 

Further, the Cartesian coordinate system fixed to the principal shear is represented by 
XI, X2, X3 and without loss of generality, assume that E: >i E= I> 0, E3 < 0 (i.e., IE3{ = 

mmax IEml) 
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The spherical coordinate system fixed to the principal axes of the shear tensor, the 

higher order terms in the expansion for tangential velocity components (3.2) near the drop- 
let surface, and the solid particle are given by (as r § i) 

v o = ( t / 2 ) q ( n ) ~  ~ - l  sin 2 0 { - - 3 E a  + (El - -  E2) cos 2~},, 
v~ = q(n)~ n-1 sin 0 sin 2~(E  2 - -  El)  ,, ( 3 . 4 )  

q(t) = t / (2(~ + I ) ) ,  q(2) = 5/2,, ~ = r - - 1 , ,  

where n = 1 corresponds to a droplet with moderate viscosity (~O(1)) andn=2 indicates solid 
particle (B = ~). 

It is seen from Eq. (3.4) that the flow field is three dimensional when E~ # E=. It 
should he mentioned that axisymmetric case, when E~ = E2 = --E2/2, was considered in [12]. 
Mass transfer in plane shear flow past solid sphere given by parameters E~ = --Ea, E2 = 0; 
n = 2 in Eq. (3.4) (three-dimensional problem) was studied in [6, 13]. 

It follows from (3.4) that there are six isolated singularities on the surface of the 
spherical droplet or the solid particle located along the principal axes of the shear stress 
tensor: i) 0 = 0; 2) 9 = ~; 3) 0 = ~/2, ~ = 0; 4) 0 = ~/2, ~ = v; 5) 0 = ~/2, ~= ~/2; 6) 
a = 7/2, ~ = 3~/2. The first two are the leading edge (inflow) stagnation points and the 
following two are the trailing edge (outflow) stagnation points and the last two are neutral 
points (saddle point type singularity). In the limiting axSsymmetric case El = E2 the last 
four isolated singularities at the equator Of the droplet 0 = v/2 are replaced by the appear- 
ance of trailing edge (outflow) stagnation line. 

The characteristic equation determining the relation between the initial curvilinear 
coordinates % and spherical coordinates 0 and ~ is the same for the case of the droplet and 
the solid sphere and has the form 

2d0 --3E~ + ( E  2 -  El) cos2 ~ 
sin 20 sin 2~ (El .  E2) d% ( 3 . 5 )  

E q u a t i o n s  ( 2 . 1 5 ) ,  ( 2 . 1 7 ) ,  and  ( 3 . 4 )  h a v e  b e e n  u s e d  i n  d e r i v i n g  t h e s e  e q u a t i o n s .  

I t  i s  n o t  d i f f i c u l t  t o  show t h a t  t h e  g e n e r a l  s o l u t i o n  o f  Eq.  ( 3 . 5 )  c a n  b e  e x p r e s s e d  i n  
t h e  f o r m  

C = tg 2 0 tg • ~ sin 2%, • = 3(E 1 + E i ) / ( E I -  E i ) ,  ( 3 . 6 )  

w h e r e  C i s  an  a r b i t r a r y  c o n s t a n t ;  t h e  c o m p o n e n t  E3 was e l i m i n a t e d  u s i n g  t h e  e q u a t i o n  J~ = 0 
( 3 . 3 )  t o  o b t a i n  t h e  i n d e x  X- The r e l a t i o n  b e t w e e n  t h e  c u r v i l i n e a r  c o o r d i n a t e  X and  s p h e r i -  
c a l  c o o r d i n a t e s  i s  o b t a i n e d  by  a s s u m i n g  i n  Eq.  ( 3 . 6 )  t h a t  C 5 X ( o b v i o u s l y ,  i t  i s  a l s o  p o s s i -  
b l e  t o  a s s u m e  ~ = ~ ( C ) ,  w h e r e  r i s  a n y  a r b i t r a r y  s u f f i c i e n t l y " g o o d " f u n c t i o n ) .  

The qualitative behavior of the limiting streamlines on the surface of the spherical 
droplet or solid particle in the first quadrant 0 ~ 0, ~ ~/2 is shown in Fig. 2; the 
value of the variable X = C (3.6) varies from zero to infinity. The integral diffusion flow 
in this segment of the surface is computed by using Eq. (2.6) at A = 4-0o. The integrand in Eq. 
(2.6) is determined by using the last equation in (2.18), taking into account the relation 
3~/30 = 4X/sini0 (which results from Eq. (3.6) when C = ~) and also in view of the fact that 
the coordinate in the given region varies within the limits 0 ~-~ ~/2. For the function 

/ X F 

. f "  / \ \ \  ~ 
/ "  z / ~ \ \  \ 

~ l  / , /  I\',\ 
. /  ,/ Z i '  " ', \ 

Il l / / i ': 
/ 

e= Z,~=o /~ . . ~ /  / "  / : " ' 4 ~ = ~ '  ? =y 

~ = ~  

F i g .  2 
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t(n +, ~-; X) we get 

1 - -  

t ( q  +, ~1-; X)-= [IE1--E"Iq(n)IT {sin 0sin2(}}x" sin! '  2wd~f = 
}1 - ] - 1  , 

(4~l) ~ o 

1 1 ~n-{-~-- 'n  + 3  ~ n  +Y.--2~ 

= -~ R+I r Z-~l g--I 3 ?I~' ,1 

-- ~ 2 2 n (2n) '~ o §  

7/. 

( 3 . 7 )  

In the case of the droplet in a plane shear flow (three-dimensional flow field) described 
by the parameters n = i, • = 3 (El = --E~, E2 = 0), the integral (3.7) can be expressed in 
terms of elementary functions 

1 

-- 82([B-Hti" [ ~ a ---- 
/ ' +  y (~ - ~)  ( 3 . 8 )  

I El l ( d~ y ,  d2 ln Y ' ~ V " f f  ~, 
=" a ~ dy ~ f -------l ]y=Zl/Z2' Z~, 2 =--~ -t- i-8 2" 64 ([B .~- t) z 2 

Equations (5) and (4) in [14] [pp. 225 and 82 in the Russian translation] have been used in 
deriving Eq. (3.8); zl and z2 correspond to the roots of the denominator in the integrand of 
Eq. (3.8); when 0 ~ X <.~ 8 the roots zI,2 are complex and after differentiation with respect 
to Y Eq. (3.8) should be rewritten, taking into consideration the relation in Y = 2i arctan 
/8X -~ - i. 

The computation of the integral diffusion flow over the entire droplet surface is carried 
out using Eqs. (2.6) and (3.8) with A = ~, taking into account that the integral flow in the 
given surface region (see Fig. 2) comprises 1/8 of the whole. Computations for the mean Sher- 
wood number Sh = I(4~) -~ give 

= ~ * - 1  * E *  E * = 0 ) .  ( 3 . 9 )  Sh 0.737 (~ + t)-l /~pe '/2, Pe = a ] E I I D  (El  = - -  ~, 

The asterisk denotes dimensional shear stress components. 

Choosing the second dimensional invariant in (3.3) J~ = /21E~I as the characteristic 
length scale for shear it is possible to rewrite Eq. (3.9) in the following equivalent form: 

= ~,~-i * l~.~*.~ II~ (3.10) , Sh = 0.620(~ + t ) - l /2pe~ ~, PeM a a 2 u  , J~ = ~ j ~ , j j  

where Pe M is the modified Peclet number. 

�9  IE I) and Results [12] obtained for the axisymmetric shear (E~ = E~ = --E~/2, J2 = 
written in terms of modified Peclet number are given by 

SN = 0.624 (~ + l)-~/~Pe~ ~, P e ~ =  a2Y~D -~. ( 3 . 1 1 )  

If, in the general case of arbitrary pure shear flow (3.1), the characteristic length 
, 

scale is taken as J2, that corresponds to the value J2 = 1 in (3.3), then the mean Sherwood 
number, which is a scalar quantity, should depend only on the ratio of the dimensional in- 
variants 

J* * Sh = O(S~) ~ ( n / J s ) .  ( 3 . 1 2 )  

The q u a n t i t y  J3  i n  ( 3 . 1 2 )  v a r i e s  f r o m  z e r o  ( p l a n e  s h e a r )  t o  t h e  maximum v a l u e  e q u a l  t o  
253"6  -~2 = 0 . 5 1 4  ( a x i s y m m e t r i c  s h e a r )  when J1 = 0 and J :  = 1.  H e r e ,  i n  v i e w  o f  Eqs .  ( 3 . 1 0 )  
and ( 3 . 1 1 )  t h e  i n c r e m e n t  i n  mean Sherwood  number  i n  t h e  e n t i r e  i n t e r v a l  o f  v a r i a t i o n  o f  J3 i s  
negligible and is less than a percent. This makes it possible to extend the hypothesis that 
the integral flow depends very weakly on the third invariant in (3.3) (~ = const), as de- 
scribed for the solid particles in [6], to droplets and bubbles, and, apparently, makes it 
possible to use Eq. (3.10) for an approximate determination of the mean Sherwood number in 
the case of'an arbitrary, pure shear flow past a spherical droplet. 

4. ~SS TRANSFER TO A CYLINDER IN ARBITRARY SHEAR FLOW 

Consider a stationary convective diffusion to the surface of a fixed circular cylinder 
of radius a in an arbitrary, incompressible, homogeneous, linear shear flow. In the general 

568 



(plane) case the velocity distribution in such a flow away from the cylinder can be described 
in the Cartesian coordinate system xl, x2 in the following form 

r- -+ ~ ,  vi = G i j z j  + o(1); Gi~6ij = 0 ( ~  ] = t , 2 ) ,  

I Gll G12 [1E l l  E121 --  
G21 G22 = ~ E12 __ En +1 ~ ~ , ( 4 . 1 )  

E n = G n = --G22, EI~ : E~I : (i/2)(G12 -k G21), ~ = ( i / 2 ) ( G ~  - - G ~ ) .  

H e r e ,  as  b e f o r e ,  v i and Gi j  a r e  n o n d i m e n s i o n a l  v e l o c i t y  componen t s  and s h e a r  t e n s o r  whose 
normalization is described below. For clarity the matrix of the shear stress coefficients 

I[GijI[ in (4.1) is written as a sum of symmetric ]IEijl[ and antisymmetric I[~][ quanti- • 
ties which correspond to pure deformation and pure rotation of the flow at infinity. In the 
general case the shear stress tensor is determined by specifying three independent quanti- 

ties E11, Eli, and ~. 

In the Stokes approximation the solution to the hydrodynamic problem on the velocity 
distribution, with boundary conditions at infinity (4.1) and no,slip condition at the sur- 
face of the cylinder r = i, v = 0, can be obtained using results of [15] which leads to the 
following expression for the stream function: 

= sm ~0 -- 7 E12 

t - (  + t ~ s i n i 0 - - ~ - Q ( r  2 i 2 I n r ) ,  ~ 7 - g g - '  v ~ = - -  t Q(r2 t - - 2 1 n r )  ~ E  r - -  1 t 0r 0,  ( 4 . 2 )  
- - ~  - -  . . . .  JVr' 

= (E~I + E~) x/~, 0 = O  + A0 (E2I  = cos (2AO), E12 - - s i n  (2AO)) 
E E 

Here  t he  c o o r d i n a t e  s y s t e m  r ,  0 ( r  = fx~ + x ~ ) ,  o b t a i n e d  f rom t h e  i n i t i a l  s y s t e m  by r o t a t i o n  
t h r o u g h  an a n g l e  AO, i s  f i x e d  to  t he  p r i n c i p a l  a x e s  o f  t h e  s [ m m e t r i ~  t e n s o r  E ( i n  p r i n c i p a l  
a x e s  t h e  t e n s o r  E i s  r e d u c e d  t o  d i a g o n a l  fo rm w i t h  e l e m e n t s  E and --E).  The q u a n t i t y  E d e t e r -  
mines  t h e  s t r e n g t h  o f  p u r e  d e f o r m a t i o n  o f  t h e  e l a s t o - c o m p r e s s i b l e  m o t i o n  o f  t he  f l u i d  a l o n g  
the  m a j o r  a x e s  and t h e  p a r a m e t e r  a c o r r e s p o n d s  to  t h e  a n g u l a r  speed  ( r i g i d  body m o t i o n )  o f  
the flow at infinity. Simple shear is given by EI~ = 0, E12 = -12 = G~2/2, E = IE~=[ in Eqs. 
(4.1) and (4.2). 

The structure of stream lines ~ = const (4.2) significantly depends on the ratio of 
parameters E and ~. Without any loss of generality we assume E = 1 in Eqs. (4.2) which cor- 

~ 2 \  ~2 �9 responds to the choice of a length scale for shear J2//2 = (E~ + ~12) in writing non- 
dimensional equations (4.1). 

The stream function (4.2) has the following limiting characteristics: 

near the cylinder surface 

r - + l , , ~  (r - -  l )2(2 s in  2 0  - -  e )  ( E =  1),  ( 4 . 3 )  

a t  i n f i n i t y  
r-+ oo, ~ (t/2)ri(siniO - - Q )  (E = 1). ( 4 . 4 )  

We s h a l l  now r e s t r i c t  t h e  s t u d y  to  t h e  f o l l o w i n g  r a n g e  o f  a n g u l a r  v e l o c i t y  o f  t he  f l o w  
a t  i n f i n i t y :  0 ~< ]a I ~ 1. I n  t h i s  c a s e ,  i t  f o l l o w s  f rom Eqs.  ( 5 . 2 ) - ( 4 . 4 )  t h a t  a l l  s t r e a m -  
l i n e s  a r e  open and t h e r e  a r e  f o u r  s t a g n a t i o n  p o i n t s  on t h e  s u r f a c e  of  t he  c y l i n d e r :  

3 I 
�9 = T ~ - -  = arcs in  ~- ,  ( 4 . 5 )  

where  e2 and 04 c o r r e s p o n d  to  i n f l o w  t r a j e c t o r i e s  and e~ and 0a d e n o t e  o u t f l o w  t r a j e c t o r i e s .  
An i n c r e a s e  i n  a n g u l a r  s p e e d  a t  i n f i n i t y  f rom z e r o  t o  u n i t y  s h i f t s  t he  t r a i l i n g  edge  s t a g n a -  
t i o n  p o i n t  0~ c o u n t e r c l o c k w i s e  by 15~ ( F i g .  3 ) .  F i g u r e  4a ,  b shows s t r e a m l i n e s  c o r r e s p o n d -  
ing  to  ~ = 0 ( p u r e  s h e a r )  and a = 1 ( s i m p l e  s h e a r ) .  

The concentration distribution and the local diffusive flow on the surface of the 
cylinder are given by Eqs. (2.4), (2.5), and (2.7) where 

~ = r - - t ,  N = g ,  n = 2 ,  g ~  / = i s i n 0 - - ~ ,  ( 4 . 6 )  
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={0; 

L i ~ a $-2 

Fig. 3 Fi Z. 4 

= / 2 - - c t  for ~ a - l - c t , .  

Using Eqs. (2.6), (2.7), and (4.6) and taking into account the equalities 

. . . .  fl t ,,% 0~)_-~,% 0,~= ~(~ w - ~ ) -  (,- ~),~(~ ~-~.~).~ 
w h e r e  K and E a r e  c o m p l e t e  e l l i p t i c  i n t e g r a l s  o f  t h e  f i r s t  and s e c o n d  k i n d  r e s p e c t i v e l y  
(Os - 31), we obtain mean Sherwood number on the surface of the cylinder 

~'~ {[ (-~v ) ( . ~ )  (~v~) ]  ~'o 
Sh ~- ~1' (1/3----~ 2E ~ - -  1 + K + 

+ [2E ( ~  ~2- - -~-~)__( t - - - -~  ) K ( ~ / ~ ) ] 2 m }  pc1/3, ( 4 , 7 )  

I = 2~ Sh, Pe -- a 2 E * D  -1  

In writing Eq. (4.7) it was assumed that in plane problems integral flow is usually com- 
puted per unit length of the cylinder which corresponds to the va~ue A = 1 (I = x3) in Eq. 
(2.6). 

In certain cases of pure shear (~ = O) and simple (I~I = i) linear shear flow past a 
cylinder we obtain from Eq. (4.7) 

Sh = 0.920 Pc1/3 (4.8) 
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( ~  = 0); S h  = 0 , 9 0 8 P e l / 3  

( iQ] = t ) .  

It follows from Eq. (4.7) that an increase in the absolute value of the angular velocity 
of rotation of the shear flow 2 leads to a decrease in mass and heat transfer of the cylinder 
with the surrounding medium. As seen from Eq. (4.8), the mean Sherwood number changes very 
little in the given range (relative increment in mean Sherwood number with increase in I21 
from zero to unity is only 1.3%). This last condition allows an approximate computation of 
mean Sherwood number corresponding to an arbitrary shear flow past a fixed circular cylinder, 
and use of the firstEq. (4.8) (instead of the exact Eq. (4-.7)) in the entire range 0 
J~J < 1.  

The author acknowledges useful discussions with Yu. P. Gupalo and Yu. S. Ryazantsev. 

LITERATURE CITED 

i. A. D. Polyanin, "Diffusive interaction of solid particles at large Peclet numbers," 
Prikl. Mat. Mekh., 4_22, No. 2 (1978). 

2. A. D. Polyanin, "Diffusive interaction of droplets in liquid," Izv. Akad. Nauk SSSR, 
Mekh. Zhidk. Gaza, No. 2 (1978). 

3. A. D. Polyanin and P. A. Pryadkin, "Two problems of convective diffusion to the surface 
of bluff bodies," Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6 (1978). 

4. V. M. Voloshuk, "Fundamental solution to diffusive boundary layer," Proc. of the In- 
stitute of Experimental Metrology, No. 3(37) (1973). 

5. V. M. Voloshuk and Yu. S. Sedunov, Coagulation Processes in Dispersive Systems [in Rus- 
sian], Gidrometeoizdat, Leningrad (1975). 

6. G. K. Batchelor, "Mass transfer from a particle suspended in fluid with a steady linear 
ambient velocity distribution," J. Fluid Hech., 95, No. 2 (1979). 

7. A. Acrivos, "Solution of the laminar boundary-layer energy equation at high Peclet num- 
bers," Phys. Fluids, 3, No. 4 (1960). 

8. A. Acrivos and J. D. Goddard, "Asymptotic expansions for laminar forced convection heat 
and mass transfer. Part i, Low speed flows," J. Fluid Mech., 23, No. 2 (1965). 

9. Yu. P. Gupalo, A. D. Polyanin, and Yu. S. Ryazantsev, "Diffusion to particles at large 
Peclet numbers in case of arbitrary axisymmetric viscous flow;" Prikl. Mat. Mekh., 40~ 
No. 5 (1976). 

I0. A. D. Polyanin and Yu. N. Syskov, "Diffusion to cylinder in the case of arbitrary vis- 
cous flow. Approximation for diffusive boundary layer," Izv. Akad Nauk SSSR, Mekh. 
Zhidk. Gaza, No. 5 (1976). 

ii. G. K. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press, London 
(1967). 

12. Yu. P. Gupalo and Yu. S. Ryazantsev, "Diffusion to particle in the case of viscous she~r 
flow. Approximation for diffusive boundary layer," Prikl. Mat. Mekh., 36, No. 3 (1972). 

13. C. G. Poe, Closed Streamline Flows Past Rotating Particles: Inertial Effects, Lateral 
Migration, Heat Transfer, Ph. D. Dissertation, Stanford University (1975). 

14. H. Bateman and E. Erdelyi, Higher Transcendental Functions, Vol. 1 [in Russian], Nauka, 
Moscow (1973) [McGraw-Hill]. 

15. A. T. Chwang and Wu T. Yao-Tsu, "Hydromechanics of low Reynolds number flow. Pt. 2, 
Singularity method for Stokes' flows," J. Fluid Mech., 67, No. 4 (1975). 

571 


